
Dimensions CM
Docker Registry Guide

Copyright © 2017 Serena Software, Inc., a Micro Focus company. All Rights Reserved.
This document, as well as the software described in it, is furnished under license and may be
used or copied only in accordance with the terms of such license. Except as permitted by such
license, no part of this publication may be reproduced, photocopied, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, recording, or
otherwise, without the prior written permission of Serena. Any reproduction of such software
product user documentation, regardless of whether the documentation is reproduced in whole or
in part, must be accompanied by this copyright statement in its entirety, without modification.
This document contains proprietary and confidential information, and no reproduction or
dissemination of any information contained herein is allowed without the express permission of
Serena Software.
The content of this document is furnished for informational use only, is subject to change
without notice, and should not be construed as a commitment by Serena. Serena assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document.
Third party programs included with the Dimensions product are subject to a restricted use
license and can only be used in conjunction with Dimensions.

Trademarks
Serena, TeamTrack, StarTool, PVCS, Comparex, Dimensions, Prototype Composer, Mariner, and
ChangeMan are registered trademarks of Serena Software, Inc. The Serena logo and Version
Manager are trademarks of Serena Software, Inc. All other products or company names are
used for identification purposes only, and may be trademarks of their respective owners.

U.S. Government Rights
Any Software product acquired by Licensee under this Agreement for or on behalf of the U.S.
Government, its agencies and instrumentalities is "commercial software" as defined by the FAR.
Use, duplication, and disclosure by the U.S. Government is subject to the restrictions set forth in
the license under which the Software was acquired. The manufacturer is Serena Software, Inc.,
2345 NW Amberbrook Drive, Suite 200, Hillsboro, OR 97006.

Product version: 14.4

Publication date: December 2017

Docker Registry Guide 1

Table of Contents

Chapter 1 Introduction . 3
What is Docker? . 4
Dimensions CM Integration with Docker . 5
Installing and Licensing . 6

Chapter 2 Starting Docker . 7
Starting a Docker Registry . 8
Using a Docker Registry without SSL . 10
Protecting a Docker Registry with SSL . 11

Creating a Certificate Authority . 11
Generating Certificates and Keys. 11
Trusting a Certificate Authority . 12
Configuring Docker to Trust a Registry. 12
Creating a Keystore. 13
Starting a Docker Registry in SSL Mode . 13
Logging in Securely to a Remote Docker Registry 13

Chapter 3 Using Docker. 15
Creating a Docker Image . 16
Logging into a Dimensions CM Docker Registry 16
Pushing an Image . 16
Approving an Image. 17
Searching for Images . 18
Pulling an Image . 18
Specifying Change Requests . 19

Chapter 4 Using the Example Docker Image 21
Overview . 22
Building the Sample Image . 22
Running the Sample Image. 22

Parameters. 22
Running an Image in SSL Mode . 24

2 Dimensions® CM

Docker Registry Guide 3

Chapter 1
Introduction

What is Docker? 4
Dimensions CM Integration with Docker 5
Installing and Licensing 6

4 Dimensions® CM

Chapter 1 Introduction

What is Docker?
Docker enables you to create lightweight environments, called containers, in which you
can run applications (Docker images). Containers run as isolated processes on a host
operating system and are not tied to any specific infrastructure. Docker runs on any
machine, on any infrastructure, and on any cloud. Images are stored in a Docker Registry.

An image’s environment, such as an application and the dependencies required to run it,
are stored in layers. Containers share the host operating system kernel with other
containers. Containers start and stop instantly and make more efficient use of RAM. You
can run multiple containers of the same image.

In the example below there are two containers, each running the same application server
image comprised of two layers, Tomcat and Centos. The containers are running on the
same Docker Engine and share the host operating system.

Docker is a commercial company, for information see this web site:

https://www.docker.com/what-docker

https://www.docker.com/what-docker

 Dimensions CM Integration with Docker

Docker Registry Guide 5

Dimensions CM Integration with Docker
The Dimensions CM integration provides a Docker Private Registry for your images and
has the following key features:

 Stores and version controls images. Changes to images over time are recorded so
that you can recall specific versions later.

 Provides an audit trail of all changes to each image.

 Uses CM privileges and roles assignments to control which images can be pulled
(downloaded). An image is only visible to the user who created it but is available to
other users after it has been approved. For details about privileges, roles
assignments, and relationships see the Process Configuration Guide.

 Enables change control of Docker images using Dimensions CM requests.

Dimensions CM Docker Registry images are stored in a secure CM repository:

 Each time an image is pushed (delivered) to CM a new baseline is created.

 Each image is a new design part.

 Each layer in an image is a new item with a unique filename.

 Layers can be shared between images using CM’s usage relationships.

6 Dimensions® CM

Chapter 1 Introduction

Installing and Licensing
The integration with Docker is installed and licensed separately from Dimensions CM. For
details contact Support.

Docker Registry Guide 7

Chapter 2
Starting Docker

Starting a Docker Registry 8
Using a Docker Registry without SSL 10
Protecting a Docker Registry with SSL 11

8 Dimensions® CM

Chapter 2 Starting Docker

Starting a Docker Registry
NOTE If you are using Docker version 10, login to the registry using the Docker login
command before performing any other registry operations.

To start a Dimensions CM Docker Registry run this command (parameters in square
brackets are optional):

java -jar docker-registry.jar
--port=<port number>
--cm-url=scm:dimensions://<cm server>/<database>
--cm-product=<product>
--cm-stream=<product>:<stream>
--cm-part="<product>:<design part>"
[--cm-part-type=<type>]
[--cm-baseline-type=<type>]
[--cm-baseline-state=<state>]
[--cm-create-parts=<true or false>]
[--cm-cache=<true or false>]
[--cm-cache-dir=<cache directory>]
[--cm-cache-size=<maximum cache size>]
[--work=<path>]
[--log-file=<path>]
[--manage-path=<path>]
[--manage-user=<user>]
[--manage-password=<password>]
[--ssl=false]

where:

 --port=<port number>

Specifies the port number of a Docker Registry.

Default: 5000

 --cm-url=scm:dimensions://<cm server>/<database>

Specifies a CM server and database, for example:

--cm-url=scm:dimensions://mycmserver/cm_typical@dim14

 --cm-product=<product>

Specifies a CM product for Docker Registry images, for example:

--cm-product=QLARIUS

 --cm-stream=<product>:<stream>

Specifies a CM stream where new images are delivered, for example:

--cm-stream=QLARIUS:DOCKER_STREAM

 --cm-part="<product>:<design part>"

Specifies a design part that will own pushed images, for example:

--cm-part="QLARIUS:DOCKER_IMAGES.A;1"

 --cm-part-type

Specifies the design part type for images that you push. Default: SUB-SYSTEM

 Starting a Docker Registry

Docker Registry Guide 9

 --cm-baseline-type=<type>

Each time an image is pushed (delivered) to CM a new baseline is created. Use this
parameter to specify a type, for example:

--cm-baseline-type=MYTYPE

Default: BASELINE

 --cm-baseline-state=<state>

Specifies the ’approved’ state for baselines. Only images in 'approved' baselines can
be searched and pulled. For example:

--cm-baseline-state=APPROVED

Default: APPROVED

 --cm-create-parts=<true or false>

By default, the registry automatically maps each image to a new, unique design part.
Alternatively, you can use upload rules to identify the owning design part for each
image.

 --cm-cache=<true or false>

You can cache the image layers inside the registry to avoid fetching the same content
from the server to the registry on every pull operation. Micro Focus recommends
setting this parameter if your registry is remote from your Dimensions CM server.

 --cm-cache-dir=<cache directory>

(Only valid if you specify cm-cache=true) Specifies the directory where the cache will
be stored.

 --cm-cache-size=<maximum cache size>

(Only valid if you specify cm-cache=true) Specifies the maximum size of the cache in
megabytes.

 --work=<path>

By default Dimensions CM Docker Registry uses the following path to store temporary
files when images are pushed and pulled:

Windows: C:\ProgramData\Micro Focus\Docker_work

UNIX: /opt/docker-registry/work

Use this parameter to specify a different location, for example:

--work=/tmp/docker-registry

 --log-file=<path>

By default Dimensions CM Docker Registry uses the following path to store log files:

Windows: C:\ProgramData\Micro Focus\Docker_logs\dockerregistry.log

UNIX: /opt/dockerregistry/logs/dockerregistry.log

Use this parameter to specify a different location, for example:

--log-file=/tmp/Micro Focus/Docker/_logs/docker-registry.log

10 Dimensions® CM

Chapter 2 Starting Docker

 --manage-path=<path>

--manage-user=<user>

--manage-password=<password>

By default Dimensions CM Docker Registry uses /system as the prefix for all
diagnostic endpoints. The default user is admin and the default password is secret.
You can specify your own path prefix and security credentials, for example:

--manage-path=/manager

--manage-user=superuser

--manage-password=password

 --ssl=false

Starts Dimensions CM Docker Registry without Secure Socket Layer (SSL) protection.

Using a Docker Registry without SSL
Docker prefers registries to be protected with SSL. If you have a non-SSL registry you
must tell Docker to make an exception and allow access.

1 Use Secure Shell (SSH) to log into the system running your Docker Engine. If you are
using the Docker Toolbox on Windows this is a Virtual Image running under
VirtualBox. You will need the IP address of that system to SSH into it. On Linux, SSH
into the Linux system itself. If you are using the boot2docker image you can login
as:

• Username: docker

• Password: tcuser

2 Edit the Docker profile and specify that the registry is insecure:

cd /var/lib/boot2docker
sudo sh
vi profile

At the top of this file EXTRA_ARGS is defined. Add this line:

--insecure-registry=myregistryserver:5000

3 Change the host name and port number as needed and save the file.

4 Restart Docker:

/etc/init.d/docker restart

5 Log into a Dimensions CM Docker Registry:

docker login <myregistryserver>:<port number>

6 Enter Dimensions CM login credentials. If the login is successful you have configured
Docker to use the non-SSL registry.

 Protecting a Docker Registry with SSL

Docker Registry Guide 11

Protecting a Docker Registry with SSL
This section is an example of how to SSL protect a Dimensions CM Docker Registry using
a self-signed certificate.

Creating a Certificate Authority
1 Use SSH to log into the boot2docker image (or the Linux system) that hosts your

Docker engine.

2 Run sudo sh to change to a root shell.

3 Generate a Certificate Authority (CA) certificate and key pair (you can optionally
change the password and subject):

cd /usr
mkdir ca_certs
chmod 700 ca_certs
cd ca_certs
mkdir certs private newcerts
echo 1000 > serial
touch index.txt
openssl req -new -x509 -days 3650 -extensions v3_ca \

-keyout private/cakey.pem -out cacert.pem \
-config /etc/ssl/openssl.cnf -passout pass:passwordformyca -subj \
"/C=UK/ST=Surrey/L=Richmond/O=Acme/OU=Development/CN=Acme"

Generating Certificates and Keys
Generate a certificate/key pair for the machine that will run your Dimensions CM Docker
Registry and sign it with the CA you created in the previous step.

1 Use SSH to log into the boot2docker image (or any system where you are running
the Docker Engine).

2 Run sudo sh

3 Run:

cd /usr
mkdir certs
openssl genrsa -out /usr/certs/domain.key 2048
openssl req -new -key /usr/certs/domain.key -out /usr/certs/ \

domain. csr -subj "/C=UK/ST=Surrey/L=Richmond \
/O=Acme/OU=Development/CN=<host running Docker Registry>"

openssl x509 -req -days 365 -in /usr/certs/domain.csr -signkey \
/usr/certs/domain.key -out /usr/certs/domain.crt -CAkey /usr \
ca_certs/private/cakey.pem -CA /usr/ca_certs/cacert.pem \
-CAcreateserial -CAserial /usr/ca_certs/serial

12 Dimensions® CM

Chapter 2 Starting Docker

where:

• /usr/ca_certs/private/cakey.pem

Is the private key for the CA.

• /usr/ca_certs/cacert.pem

Is the public certificate for the CA.

• /usr/certs/domain.key

Is the private key for the registry server.

• /usr/certs/domain.crt

Is the public certificate for the registry server.

Trusting a Certificate Authority
Next you need to tell the Linux operating system inside the boot2docker image to trust
the generated CA certificate. Usually Linux has scripts to do this but they are missing from
the boot2docker Linux distribution so you need to do it manually.

Replace 4c05dafl with whatever hash is returned by the openssl x509 hash command:

cp /usr/ca_certs/cacert.pem /usr/local/share/ca-certificates/yourca.pem
cd /etc/ssl/certs
ln -s /usr/local/share/ca-certificates/yourca.pem
openssl x509 -hash -in serenaca.pem
ln -s serenaca.pem 4c05dafl

Configuring Docker to Trust a Registry
Every Docker Engine machine from which you want to access a remote Docker Registry
requires a directory that matches your registry URL. Add your CA certificate and restart
docker.

1 Use SSH to log into the boot2docker image on each remote host.

2 Run:

mkdir -p /etc/docker/certs.d/myregistryserver:5000
cd /etc/docker/certs.d/myregistryserver:5000

3 Create a file called ca.crt containing the contents of the CA public certificate in:
/usr/ca_cert/cacert.pem

4 Restart Docker:

/etc/init.d/docker restart

 Protecting a Docker Registry with SSL

Docker Registry Guide 13

Creating a Keystore
1 Create a PKCS12 keystore that the Dimensions CM Docker Registry can use to identify

itself:

openssl pkcs12 -export -in /usr/certs/domain.crt -inkey /usr/ \
certs/domain.key out /usr/certs/keystore.p12 -name \
tomcat -CAfile /usr/ca_certs/cacert.pem -caname root -chain

2 Copy the generated keystore.p12 file to the system running the Docker CM Registry
JAR.

Starting a Docker Registry in SSL Mode
Now that you have a SSL keystore, specify that it can be used when you start a
Dimensions CM Docker Registry:

java -jar docker-registry.jar --port=5000 --ssl=true \
--keystore=C:\temp\keystore.p12 \
--keystore-type=PKCS12 \
--keystore-pass=changeit \
--cm-url=scm:dimensions://mycmserver/cm_typical@dim14 \
--cm-product=QLARIUS --cm-stream=QLARIUS:DOCKER_STREAM \
--cm-part=QLARIUS:DOCKER_IMAGES.A;1

Use the keystore password that you entered when you created the keystore.

Logging in Securely to a Remote Docker Registry
Login securely to the remote Docker Registry:

docker login myregistryserver:5000

If the login is successful you have secured your Dimensions CM Docker Registry using
SSL.

14 Dimensions® CM

Chapter 2 Starting Docker

Docker Registry Guide 15

Chapter 3
Using Docker

Creating a Docker Image 16
Logging into a Dimensions CM Docker Registry 16
Pushing an Image 16
Approving an Image 17
Searching for Images 18
Pulling an Image 18
Specifying Change Requests 19

16 Dimensions® CM

Chapter 3 Using Docker

Creating a Docker Image
 To create a Docker image:

docker build -t <image name> .

This is an example of how to build an image. Using Dimensions CM Docker Registry
does not affect how you create images.

 You can optionally add a tag to identify an image:

docker build -t <image name>:<tag name> .

For example:

docker build -t myimage:turnover .

Logging into a Dimensions CM Docker Registry
1 Run this command and specify the CM host machine and port number:

docker login <registry server>:<port>

For example:

docker login myregistryserver:5000

2 Enter credentials to log into CM.

Pushing an Image
To push (deliver) an image to a Dimensions CM Docker Registry:

docker push <registry server>:<port>/<image name>:<tag>

For example:

docker push myregistryserver:5000/insurancesvc:turnover

NOTE

 If Docker image layers do not already exist, they are delivered as items at the top of
the stream.

 The item type and format used are determined by CM upload rules. Check that you
have an upload rule, with the format BINARY, to handle files with no file extension.

 By default, the registry automatically maps each image to a new, unique CM design
part called <image name>. The new part is created in a product and owned by a
parent design part. The product and design part are configured by your administrator
when the Docker Registry is started, see page 8 for details.

 Approving an Image

Docker Registry Guide 17

 To use upload rules to identify the owning CM design part for an image, specify this
parameter when you start the registry:

--cm-create-parts=false

For example, assume you have the following upload rule defined in the CM
administration console:

Path: test/**

Part: QLARIIUS:TEST.A;1

Format: BINARY

When you push an image called test/insurancesvc the manifest of the image is
created as an item owned by the QLARIIUS:TEST.A;1 design part. A new baseline is
created from that design part containing the layers used by the image and the image
manifest file:

<image name>-<tag>-<version>

For example:

TEST/INSURANCESVC-TURNOVER-1

 To save space in your repository, after you push an image:

• Any layer that is no longer required is automatically deleted.

• Only baselines that are at the Approved lifecycle state are preserved. All other
baselines of the image are deleted.

Approving an Image
Images are only visible to the user who created them. To make an image visible to all
users:

1 Log into a CM client as the owner of the baseline associated with the image.

2 Action the baseline to the Approved lifecycle state (this state was configured when the
Docker Registry started, see page 8).

NOTE

 By default all images require approval though this can be switched off by a CM
administrator when a Docker Registry is started.

 After an image is approved all users can search for and pull it, providing they have the
required Dimensions CM privileges and roles.

18 Dimensions® CM

Chapter 3 Using Docker

Searching for Images
 To list all images:

docker search <registry server>:5000/

Example output:

NAME DESCRIPTION
hello-world latest hello world image
insurancesvc Docker image
ubuntu Some Ubuntu image
web/qlarius Qlarius web app

This is a list of all the images that you created or approved.

 To search for images using a keyword:

docker search <registry server>:5000/ubun

Example output:

NAME DESCRIPTION
ubuntu Some Ubuntu image

 To search for images in a namespace:

docker search <registry server>:5000/web/q

Example output:

NAME DESCRIPTION
web/qlarius Qlarius web app

Pulling an Image
To pull a specific image tag:

docker pull <registry server>:5000/<image>:<tag>

For example:

docker pull myregistryserver:5000/insurancesvc:turnover

The pull command downloads the image from the corresponding baseline. All Dimensions
CM privileges and roles are honored by the pull request.

 Specifying Change Requests

Docker Registry Guide 19

Specifying Change Requests
When you build or modify a Docker image you can specify Dimensions CM change
requests using a LABEL called com.serena.requests inside your Docker file. For
example if the Docker file contains:

FROM tomcat:8-jre8
LABEL com.serena.requests="QLARIUS_CR_21,QLARIUS_CR_25"
CMD ["catalina.sh", "run"]

when the image is pushed to the Dimensions CM Docker Registry, the resulting baseline is
related to requests QLARIUS_CR_21 and QLARIUS_CR_25.

20 Dimensions® CM

Chapter 3 Using Docker

Docker Registry Guide 21

Chapter 4
Using the Example Docker Image

Overview 22
Building the Sample Image 22
Running the Sample Image 22

22 Dimensions® CM

Chapter 4 Using the Example Docker Image

Overview
A sample Docker image file is included with the Dimensions CM server installation and is
placed in the same folder as the JAR file. The image is based on Alpine Linux (a compact
Linux distribution ideal for containers) and includes:

 Oracle Java JDK 8 (1.8.0_74-b02)

 The Dimensions CM Docker Registry JAR file

 A shell script to launch the registry

Building the Sample Image
To build the image go to the directory containing the Docker file and run Docker build, for
example:

docker build -t cmregistry .

Running the Sample Image

Parameters
The command line parameters for the Dimensions CM Docker Registry are passed to the
image as environment variables. Parameters in square brackets [] are optional.

docker run -it
-e CM_URL=scm:dimensions://<server>/<base database>@<db connection>
-e CM_PRODUCT=<product id>
-e CM_STREAM=<product id>:<stream id>
-e CM_PART=<product-id>:<part-id>.<variant>
[-e CM_PART_TYPE=<part type>]
[-e CM_BASELINE_TYPE=<baseline type>]
[-e CM_BASELINE_STATE=<approval state>]
[-e CM_CREATE_PARTS=<true or false>]
[-e CM_CACHE=<true or false>]
[-e CM_CACHE_DIR=<cache directory>]
[-e CM_CACHE_SIZE=<maximum cache size>]
[-e CM_LOG]
-p <port number>:5000
cmregistry

 Running the Sample Image

Docker Registry Guide 23

where:

 CM_URL=scm:dimensions://<server>/<base database>@<db connection>

Specifies a Dimensions CM server name, base database, and database connection, for
example:

CM_URL=scm:dimensions://mycmserver/cm_typical@dim14

 CM_PRODUCT=<product id>

Specifies a product ID, for example: CM_PRODUCT=QLARIUS

 CM_STREAM=<product id>:<stream id>

Specifies a product ID and a stream, for example:

CM_STREAM=QLARIUS:DOCKER_IMAGES

 CM_PART="<product-id>:<part-id>.<variant>"

Specifies a complete design part specification, for example:

CM_PART="QLARIUS:DOCKER_IMAGES.A;1"

 CM_PART_TYPE=<part type>

Specifies a design part type.

Default: CM_PART_TYPE="SUB-SYSTEM"

 CM_BASELINE_TYPE=<baseline type>

Specifies a baseline type, for example:

CM_BASELINE_TYPE="BASELINE"

 CM_BASELINE_STATE=<approval state>

Specifies a baseline approval state, for example:

CM_BASELINE_STATE="approved"

 CM_CREATE_PARTS=<true or false>

• (Default) true: the registry maps each image to a single design part that is
automatically created by the registry. Each design part has a unique name.

• false: the registry uses upload rules to identify the owning design part for each
image. The registry can support multiple images with the same name or
namespace. For example, you can push "lib1/server/tomcat" and "lib2/
server/tomcat".

 CM_CACHE=<true or false>

You can cache the image layers inside the registry to avoid fetching the same content
from the server to the registry on every pull operation. Micro Focus recommends
setting this parameter if your registry is remote from your Dimensions CM server.

 CM_CACHE_DIR=<cache directory>

(Only valid if you specify CM_CACHE=true) Specifies the directory where the cache will
be stored. The default is the user’s HOME directory:

Windows: %USERPROFILE%\Serena\Cache

UNIX: ~\.Serena\Cache

24 Dimensions® CM

Chapter 4 Using the Example Docker Image

 CM_CACHE_SIZE=<maximum cache size>

(Only valid if you specify CM_CACHE=true) Specifies the maximum size of the cache in
megabytes.

Default: CM_CACHE_SIZE=2000

 -p <port number>:5000

By default, the registry listens on port 5000, however you can map to a different port.
For example, to listen on port 5555:

-p 5555:5000

 CM_LOG

Specifies the location for the log files inside the running container (not on the file
system of the host running the container). Default:

/opt/docker-registry/logs/docker-registry.log

When the container is running, use it the same as a Dimensions CM Docker Registry JAR
file, for details see page 15.

Running an Image in SSL Mode
To run an image in Secure Socket Layer (SSL) mode, specify the SSL, KEYSTORE, and
KEYSTORE_PASS environment variables.

docker run -it -v /c/Users/myuser/certs:/certs \
-e CM_URL=scm:dimensions://mycmserver/cm_typical@dim14 \
-e CM_PRODUCT=QLARIUS \
-e CM_STREAM=QLARIUS:DOCKER_IMAGES \
-e CM_PART="QLARIUS:DOCKER_IMAGES.A;1" \
-e SSL=true \
-e KEYSTORE=/certs/mykeystore.p12 \
-e KEYSTORE_PASS=changeit \
-p 5000:5000 \
cmregistry

NOTE For SSL mode mount a volume containing your keystore to the /certs mount
point using the -v option. In the example above /c/Users/myuser/certs is mounted to
/certs inside the container. That directory contains the mykeystore.p12 file containing
certificates for the machine running the Docker engine.

	Table of Contents
	Introduction
	What is Docker?
	Dimensions CM Integration with Docker
	Installing and Licensing

	Starting Docker
	Starting a Docker Registry
	Using a Docker Registry without SSL
	Protecting a Docker Registry with SSL
	Creating a Certificate Authority
	Generating Certificates and Keys
	Trusting a Certificate Authority
	Configuring Docker to Trust a Registry
	Creating a Keystore
	Starting a Docker Registry in SSL Mode
	Logging in Securely to a Remote Docker Registry

	Using Docker
	Creating a Docker Image
	Logging into a Dimensions CM Docker Registry
	Pushing an Image
	Approving an Image
	Searching for Images
	Pulling an Image
	Specifying Change Requests

	Using the Example Docker Image
	Overview
	Building the Sample Image
	Running the Sample Image
	Parameters
	Running an Image in SSL Mode

